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Relaxation Functions in Dipolar Materials 
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We compare two simple "cartoons" of relaxation processes in dipolar materials: 
the "first passage" relaxation function introduced by K. Weron (1991) and the 
"average" relaxation function expressing the proportion of dipoles which did 
not change their imposed aligned orientation up to a certain time, the latter 
providing a description closer to what is experimentally measured. In some 
cases, the two relaxation functions are proved to coincide. 

KEY WORDS:  Dielectric relaxation function; Kohlrausch-Williams-Watts 
response; one-sided L6vy stable distribution; order statistics. 

1. INTRODUCTION 

The surprising empirical observation that the relaxation decay law for 
many  diverse dipolar systems follows the same stretched exponential  
pattern 

(k( t ) = exp  [ ( - t /z  ) ~] 

where the parameters 0 < ct < 1 and z > 0 depend on the material and can be 
a function of external variables such as temperature, already has attracted 
much theoretical attention, tl~ Several derivations of this ubiqui tous decay 
law, involving various concepts such a percolation, fractals, hierarchical 
relaxation of constraints,  mult ipolar  interaction transitions, or defect-diffu- 
sion processes, are known. Klafter and Shlesinger t2~ analyzed the under-  
lying common factors in the case of three different physical models: the 
F6rster direct- t ransfer  model, the hierarchically constrained dynamics 
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model, and the defect-diffusion model, and found that a common feature 
responsible for generating the stretched exponential law is the existence of 
a scale-invariant distribution of relaxation times. The same explanation 
(a power law distribution) was found for the spin-flip dynamics t3) on 
fractals and percolative structures. 

The widely investigated defect-diffusion model t4) in the context of 
dielectric relaxation is based on the concept of migrating defects (e.g., 
vacancies, local conformational fluctuations, grain boundaries) triggering 
the relaxation of dipoles. Relaxation from an aligned to a random configu- 
ration occurs instantaneously when the nearest defect reaches the dipole for 
the first time. A natural question in this case, What is the probability that 
the dipole will fl'rst be reached at time t by one of  the diffushTg defects? can 
be substituted by a related question: What is the probability that the system 
of dipoles has not changed up to time t its initial aligned orientation imposed 
by an external electric field? 

The latter point of view was adopted in recent probabilistic studies of 
nonexponential relaxation. (s 8) where a related notion of the relaxation func- 
tion in dipolar materials was introduced. The papers demonstrated that, 
once one accepts such a definition, the class of possible relaxation functions 
is essentially restricted to those represented by stretched exponentials or, in 
another terminology, to Kohlrausch-Williams-Watts (KWW) relaxation 
responses. The reasoning was based on an observation that the switching 
time 0 of a single dipole is a random variate, finite with probability 1, and 
the whole scheme depends on the assumption that the probability P(O > t) 
of a switching time 0 of a single dipole exeeding t is of a certain shape 
(exponential in the above-mentioned papers) common for all dipoles. The 
concept of such a common distribution, if it is to have a physical meaning, 
has to be associated with a sort of ergodic type behavior, so that 

P ( O > t ) = ( I ( O > r ) ) =  lira I (O t> t )+  ... +I (Ou>t )  
N-~_ N 

where I(Oi> t) indicates the event that the individual ith dipole switched 
after time t. 

To show the physical significance of the exponent ~, several workers 
have modeled the system as an interacting particle system on a d-dimen- 
sional lattice, with interaction reflecting the cooperative nature of the 
phenomenon, and the relaxation function representing the transient 
behavior of the system in its approach to equilibrium. There is a large 
physical literature (3,H) where complex models depending on the underlying 
spatial (lattice or continuous) structure are provided to explain non- 
exponential decay laws. In the mathematical literature, the results on the 
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transient behavior of interacting particle systems are sparse, and certainly we 
could find nothing that would explain an appearance of KWW responses. 
The work that perhaps comes closest ~2) contains deep results concerning 
the d-dimensional volume functional of the so-called Wiener (or p-stable) 
sausage. This result might be reinterpreted to give the KWW response 
with exponent d/(d+p). Despite their depth, all these results do not 
account for the full range of exponents in the experimentally encountered 
responses.r ~3.14) 

So we take a different tack in this paper, and try to provide some 
insight into the situation, by comparing two simple "cartoons" of relaxa- 
tion processes in dipolar materials: the "first passage" relaxation func- 
tion ~51 and the "average" relaxation function expressing the proportion of 
dipoles which did not change their imposed aligned orientation up to a 
certain time, the latter perhaps providing a description closer to what is 
experimentally measured. In some cases, the two relaxation functions are 
proved to coincide. The models are mathematically simple and do not take 
into account the spatial structure. Hence, admittedly, there are obvious 
limits to how much they can explain. 

In Section 2 we present a simple probabilistic explanation of the 
appearance of the KWW response (with exponent 0 < c o < l ! )  in the 
language of the "first passage" relaxation function ~b(t), and provide its 
graphical interpretation. Let us remark that a broader class of dielectric 
responses can be obtained ~71 if the random variate 0 is permitted to be 
infinite with a probability Po > 0. Such a modification expresses the well- 
known fact that individual dipoles and their environments do not remain 
independent during the process of relaxation ~3~ and leads directly to a 
class of double power laws which includes the KWW and the Debye 
responses as special cases. .7) In Section 3 we introduce, via the theory of 
order statistics, an "average" relaxation function qs(t) better reflecting the 
quantities measured in experiments. 1~4) It gives the proportion of dipoles 
which did not change their imposed aligned orientation up to time t. We 
provide a graphical illustration of the "average" relaxation function for a 
fixed size N of a dipolar system and evaluate its limit as N--* o0, which 
recovers the original distribution of switching time for individual dipoles. 
Finally, in Section 4 we show that in the KWW case, the "first passage" relaxa- 
tion function is esentially identical with the "average" relaxation function. 

2. " F I R S T  P A S S A G E "  R E L A X A T I O N  F U N C T I O N  

The traditional explanation for a nonexponential (non-Debye) dipolar 
relaxation has been to assign a local value to the relaxation time ~ for 
each dipole and then to recover the observed regression of polarization 
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fluctuations by means of the relaxation function ~b(t) expressed as a 
weighted average of exponential relaxation function ~5) 

~b(t) = f w(z) exp( - t/z) dz (2.1) 

This very natural statistical attempt has the advantage of retaining the 
stochastic features of Debye's original concept t~6) of independently expo- 
nentially relaxing dipoles in a viscous medium that acts as a random 
noise source. However, the choice of the weight function w(z) cannot be 
arbitrary, but has to be determined ad hoc by the empirical relaxation 
functions; such an approach hardly explains the universality of dielectric 
responses, t~7-~9) The best one can conclude is that a given empirically 
observed relaxation law is compatible with a particular distribution of 
relaxation times z. That approach does not explain why the stretched 
exponential or the double power law should be so universally applicable. 

The recent probabilistic approach tS-s) to nonexponential relaxation 
responses, based on the concept contained in the cluster model t13`lg) and a 
new definition of relaxation function as the probability that the system as 
a whole has not changed its initial state up to time t, uniquely leads to the 
experimentally observed stretched exponential and double power forms of 
dielectric responses. In this paper we will refer to that relaxation function 
as the "first passage" relaxation function. Let us describe the basic results 
in some detail. 

As is the case in the traditional approach, neglecting the intercluster 
motions, we may assume that the probability that the dipole has not 
changed its initial aligned position, imposed by an external field, during 
time t following removal of that field, is exponential 

q~D(t,b)=P(O>~t[fl=b)=exp(-bt) for t~>0, b > 0  (2.2) 

conditioned only by the value b taken by the relaxation rate/3 = 1/~. The 
latter reflects the random intracluster influence. Here 0 represents the 
random switching time of the individual dipole. In the system of N aligned 
dipoles the random variable fl~ will denote the relaxation rate of the ith 
dipole and the variable 0,. the "switching time"--the time needed for 
changing its initial orientation. The basic assumption is that fll,/3 2 .... 
and O~,Oz .... form sequences of nonnegative, independent, identically 
distributed random variables with distribution functions F#(b) and F(t), 
respectively. The total probability that the ith dipole has not changed its 
initial aligned position up to time t equals 

f? P(Oi>>. t) = e x p ( - b t )  dF~(b)= (~D(t,/3,)) (2.3) 
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The right-hand side of Eq. (2.3) is a weighted average of exponential 
relaxations with respect to the distribution of relaxation rates fl, and 
corresponds to the weighted average in (2.1). The crucial observation is 
that it is also the Laplace transform ~(Ft~; t) of the distribution function 
Ft~. It has to be stressed that so far there are no restr ict ions on Ft~; the only 
requirement is that it is a distribution function supported on the non- 
negative half-line. 

For  a finite ensemble of N dipoles one can then define a "first passage" 
relaxation function as 

~bN(t) = P(min(01, Oz ..... ON) >>- t) 

= [P (O ,>~  t)]N= [&O(Fo; t)] N (2.4) 

which expresses the probability that the whole system has not changed its 
initial state, imposed by an external electric field, up to time t. The second 
equality is justified by the assumption that the 0,. are independent, identi- 
cally distributed random variables. However, the above quantity converges 
to zero as N--. c~, so to get a meaningful relaxation function, one has to 
further rescale relaxation times. This leads to the following definition of the 
"first passage" relaxation function of a macroscopic dipolar system: 

~b(t) = lim P(A N min(01N,..., ONN ) ~.~ t) (2.5) 
N ~  

E( [ = lim P 0i~> = lim s Fa; (2.6) 
N ~ c ~  N ~ o o  

where AN is a sequence of suitable normalizing constants. 
The "first passage" relaxation function ~b(t) is defined by formula (2.5) 

in terms of the time of switching of the first, i.e., the fastest dipole, that is, 

To := rain(01 ..... ON) 
which is shown in Fig. 1. 

4,~(t) 

1 

0 I 

T~, t 

Fig. 1. A fixed real izat ion of ItA~Ts~,I for A s =  1. 
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The Nth power of the Laplace transform of the nondegenerate distribu- 
tion function Fr converges to the nondegenerate limiting transform if and 
only if F~ belongs to the domain of attraction of a completely asymmetric 
L6vy a-stable law tz~ with 0 < a <  1. Then we get the "first passage" 
relaxation function as a weighted average of exponential relaxations with 
respect to the distribution F9 of the relaxation rate/~: 

f0 -r~�84 
~b(t) = s176 t) = e x p ( - b t )  dFa(b ) = (~o(t ,  f l))  (2.7) 

where/~ is an a-stable random variable 

/~ = lim Z~=, fli 
N~co A N 

The above result allows us to represent a system of independent, 
exponentially relaxing dipoles with an unknown distribution F• of the 
relaxation rates fli, i.e., a system "chosen" by the external field, by an 
"average" dipole with the relaxation rate /~ being an a-stable random 
variable. 

Hence, the "first passage" relaxation function of a macroscopic dipolar 
system consisting of independent, conditionally exponentially relaxing 
dipoles with different relaxation rates/3i is uniquely determined and equals 

(J( t )=exp[--(At)~],  0 < a <  1 (2.8) 

where A is a positive constant. The relaxation function obtained in 
Eq. (2.8) is of the form of the well-known empirical KWW relaxation 
function. In the case when a ~ 1 one obtains the relaxation function in the 
Debye exponential form and this corresponds to the case of a degenerate 
limiting distribution function of relaxation rates/~.<7.8) 

It is not necessary to know the detailed nature of Fp to obtain the 
limiting form (2.8). In fact, this is determined only by the behavior of 
the tail of Fe(b) for large b, and so a good deal may be said about the 
asymptotic properties based on rather limited knowledge of the properties 
of F/~. Namely, the necessary and sufficient condition for the limit (2.7) to 
exist, and thus for the "first passage" relaxation function to be well defined, 
is that 12~ J 

1 - F l ~ ( x b )  
lira x -~ foreach x > O  and O < a < l  (2.9) 

h ~  1 -- F~(b) 
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what can be interpreted as a requirement that the individual relaxation 
rates have approximately a self-similar behavior: 

P(fl i>xb)=x-: 'P(f l i>b) forany x > 0 ,  0 < c t < l ,  and la rgeb  

(2.10) 

This result, obtained here by means of purely probabilistic techniques, is in 
agreement with physical models (2) in which the scale-invariant relaxation 
rate has been identified as an underlying common mathematical feature. 

In conclusion, if (2.1) has to represent the macroscopic relaxation 
function, then the weight function w(z) of relaxation times has to be of the 
form 

where w~ = p(1/r; c~, 1 ) is the completely asymmetric L6vy-stable probability 
density with 0 < ~ < 1. This corresponds to the stretched exponential relaxa- 
tion function. 

3. " A V E R A G E "  RELAXATION F U N C T I O N  V I A  ORDER 
STATISTICS 

Consider a sample of independent, identically distributed random 
variables 

O|N,..., ONN 

representing switching times of N dipoles, with a common distribution 
function F(t). The dipoles switch in a certain order, and in our model in 
this section that order will be reflected in the notion of the order 
statistics (2-~ 

OI:N,'",ON:N 

which is simply a nondecreasing rearangement of the above switching times 
OIN ..... ONU. In other words, 

OI:N~ "'" ~ON: N 

Traditionally, Ok: N is called the kth-order statistics of the above sample. 
Note that 

Ol :N = Tu = min(OiN,..-, ONN) 
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I - I / N  

I - 2 / N  

- (N - U/N 

0 

Fig. 2. 

I I I I : ~- 

Olin O2m Oam ON-I:N ON:N t 

Illustration of cI, u( t  ) for a fixed realization of switching times 0k: u, 0 <~k ~< N. 

which corresponds to the quanti ty introduced in the last section where the 
"first passage" relaxation function was discussed, and that 

Ou:N = max { 01u ..... Ouu} 

In terms of the above ordered switching times, the relaxation function for 
a fixed size N of the system can be defined as 

k 
c/,u(t) := 1 - - -  if O~:u<~t<Ok+l:u 

N 

where, by definition 0o:N=0.  A sample path  of such a relaxation function 
is shown in Fig. 2. 

In other words, 

k u ( t )  
cI' u ( t  ) = 1 - - -  

N 

where 

k u ( t )  = min{k:  Ok § l:N > t} = max{k:  0k:N ~< t} 

Then the classical relaxation function r that  measures the average 
propor t ion  of unswitched dipoles at time t can be defined as 

�9 ( t ) := lim <q~u(t)> (3.1) 
N ~ o o  

Consider a fixed k and N. The critical observat ion which makes  order 
statistics useful for our purposes is that, for any t > 0, the event 

{Ok:u>~t} 

= {at least N -  ( k -  1 ) of  the switching times 0,v/> t for 1 ~< i~< N} 

= {eu( t )  >~ N - -  (k - 1 )} (3.2) 
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where, after an increasing rearangement of the above switching times of N 
dipoles, eN( t )=N-kN( t )  represents the total number of dipoles whose 
switching times exceeded (23) time t. 

In this context, to evaluate (3.1), we need to look first at what can be 
called the finite ensemble "average" relaxation function expressing the 
proportion of dipoles which did not change their orientation up to the 
moment t. We have 

(eN(t)) 
(~bN(t)) N 

~, l U  1 kP(eu(t)=k) ~[ ~. P(eN(t)>~k) 
N k = l  k ~ l  

1 P ( e u ( t ) N - ( k -  Y'. P(Ok:N>>.t) (3.3) 
N k = l  ~1 

However, the distribution of the kth-order statistics is well known (22'23) 
and expressible in terms of the common distribution function F(t) of 
individual switching times Ok:N, SO that we get 

( ~ u ( t ) >  = k~ F l ( t ) [ 1 - F ( t ) ]  u-t  (3.4) 
= 1  I = 0  

and after changing the order of summation, we get 

( ~ N ( t ) )  = ~  ~ Y', Ft(t)[1--F(t)] N-' 
/ = 0  k=l+  1 

1 -  =N 2 ( N - l - l )  r ' (0[ l -F( t ) ]  N-I 

= El(t)[ 1 -- F(t)]  N-t  
I = 0  

1 u - I  1 u - I  
--~. ~=o l ( N )  F ' ( t )[1-F(t )]u- ' -~  ~=o ( N )  F'(t)[1-F(t)] N-' 

= [1 -- FU(t)] -- [NF(t)-NFU(t)] ---~ [1 --FN(t)] 

= 1 -- F(t) - 1 [ 1 - FN(t)] 

822/78/3-4-24 
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Now, as N--* oo we obtain that for the "average" relaxation function 
based on the above order statistics model 

~b(t)= lim ( t b _ { N } ( t ) )  = 1 -F(t)  (3.5) 
N ~ o z . ,  

This recovers the original distribution of switching times for individual 
dipoles. 

4. R E M A R K S  A N D  C O N C L U S I O N S  

4.1. When do the "first passage" and the "average" relaxation func- 
tions coincide? The "first passage" and "average" relaxation functions ~b(t) 
and c/,(t) coincide if and only if the distribution Fa(t) of relaxation rates on 
the microscopic level is equal to the distribution F~(t) on the macroscopic 
level. Then, in view of (2.7) and (2.8), both of them have to be a-stable 
with 0 < ~ <  1. 

Indeed, if we assume that the "first passage" relaxation function is well 
defined, then we have from formula (2.3) that 

1-F(t)=P(O~>~t)= exp(-bt)dFp=~9~(Ft~;t ) 

Hence, formula (3.5) for the "average" relaxation function can be rewritten 
as follows: ~(t)=SY(Fa;t). On the other hand, by (2.7), ~k(t)=LP(Fg;t), 
and we can see that c/,(t)=~b(t) if and only if &a(Ft~; t ) = ~ ( F g ;  t). Since 
the Laplace transform uniquely determines the distribution function, the 
necessary and sufficient condition for the equality of the two relaxation 
functions is the equality of the distribution functions 

ra(t)= Fg(t) 

Once we decide to use the "first passage" relaxation function, its very 
existence implies that the microscopic distribution function Fe(t) of relaxa- 
tion rates is in the domain of normal attraction of the a-stable law and has 
the t -~ asymptotics at + ~ described in (2.9), the same as the a-stable 
distribution function F~(t) itself. So, in practical terms, we can just say that 
the equality of microscopic and macroscopic relaxation rates is a necessary 
and sufficient condition for the equality of the "first passage" and "average" 
relaxation functions. 

Note that among other commonly used one-sided distribution func- 
tions, 124~ such as Burr, Pareto, generalized Pareto, transformed gamma, 
gamma, loggamma, lognormal, and Weibull distribution functions, only 
the Burr and Pareto distribution functions satisfy condition (2.9). 
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4.2. A hierarchy of relaxation functions. Notice that the order statistics 
discussed in Section 3 permits the introduction of a whole hierarchy of 
relaxation functions corresponding to "first passage," "second passage," 
etc., transition functions, thus extending the ideas of Section 2. They all 
lead to a KWW-type relaxation function, but with polynomial corrections. 
Indeed, if k =  1, 2 ..... N, and N is the number of dipoles in the finite 
ensemble, then the "kth passage" transition function is 

k- 1 (At)~= 
~b(~l(t)= lim P(ANOk:u>~t)=e -(At)" ~ i! 

N ~ o ' ~  i = 1  

where AN is a sequence of suitable normalizing constants. (22" 23) Obviously 

~(1)(t) = ~( t )  

corresponds to the "first passage" relaxation function introduced in 
Section 2. 

4.3. Fractal scaling of time. The appearance of the KWW relaxa- 
tional response can also be partially justified by presupposing a fractal time 
scaling. On the physical level this line of reasoning has been pursued by 
several authors. (25-3~ Mathematically, it can be summarized as the follow- 
ing characterization of the KWW response function, which is a fractal 
generalization of the well-known characterization of the exponential 
(Debye) distribution by its memoryless property: I f  0 is a nonnegative 
random variable and cr > O, then the following statements are equivalent: 

(i) P(O>(t~+s~)~/~[O>s)=P(O>t)  for all s, t~>0. 

(ii) There exists a 2 > 0  such that P(O > t ) = e x p ( - 2 t ~ )  for all t >~O. 

As its exponential special case, the above characterization can be 
immediately obtained from Sierpifiski's theorem on solutions of the Cauchy 
functional equation f ( t  + s) = f ( t )  f(s). 

However, it is important to notice that the fractal time argument is 
unable to account for the fact that in empirical data always 0 < u < 1. On 
the other hand, models discussed in Sections 2 and 3 also provide a 
satisfactory mathematical explanation of that fact. 
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